Number of Bound States of Schrödinger Operators with Matrix-valued Potentials

نویسندگان

  • RUPERT L. FRANK
  • ROBERT SEIRINGER
چکیده

We consider the Schrödinger operator −∆ − V (x) on R, but with the difference from the usual case that V is a Hermitian matrix-valued potential. In other words, the Hilbert space is not L(R) but L(R;C). The values of functions in this space, ψ(x), are N−dimensional vectors. (What we say here easily generalizes to ‘operatorvalued’ potentials, i.e., C is replaced by a Hilbert space such as L(R), but we stay with matrices in order to avoid technicalities.) The Cwikel-Lieb-Rozenblum (CLR) bound for d ≥ 3 in the scalar case N = 1 states that #(−∆ − V ), the number of negative eigenvalues of −∆− V , can be estimated by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Bound States for Schrödinger Operators with Operator-valued Potentials

Cwikel’s bound is extended to an operator-valued setting. One application of this result is a semi-classical bound for the number of negative bound states for Schrödinger operators with operator-valued potentials. We recover Cwikel’s bound for the Lieb–Thirring constant L0,3 which is far worse than the best available by Lieb (for scalar potentials). However, it leads to a uniform bound (in the ...

متن کامل

A Sharp Bound on Eigenvalues of Schrödinger Operators on the Halfline with Complex-valued Potentials

We derive a sharp bound on the location of non-positive eigenvalues of Schrödinger operators on the halfline with complex-valued potentials.

متن کامل

Inverse Spectral Problems for Schrödinger-type Operators with Distributional Matrix-valued Potentials

The principal purpose of this note is to provide a reconstruction procedure for distributional matrix-valued potential coefficients of Schrödingertype operators on a half-line from the underlying Weyl–Titchmarsh function.

متن کامل

A Class of Matrix-valued Schrödinger Operators with Prescribed Finite-band Spectra

We construct a class of matrix-valued Schrödinger operators with prescribed finite-band spectra of maximum spectral multiplicity. The corresponding matrix potentials are shown to be stationary solutions of the KdV hierarchy. The methods employed in this paper rely on matrix-valued Herglotz functions, Weyl–Titchmarsh theory, pencils of matrices, and basic inverse spectral theory for matrix-value...

متن کامل

Bound States of Discrete Schrödinger Operators with Super-critical Inverse Square Potentials

We consider discrete one-dimensional Schrödinger operators whose potentials decay asymptotically like an inverse square. In the super-critical case, where there are infinitely many discrete eigenvalues, we compute precise asymptotics of the number of eigenvalues below a given energy E as this energy tends to the bottom of the essential spectrum.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007